Maths-cours

COURS & EXERCICES DE MATHÉMATIQUES

Close

Equations du premier degré

Résoudre les équations :

  1. 2x+3=5x12x+3=5x - 1

  2. 3(x+2)2x=x+53\left(x+2\right) - 2x=x+5

  3. 12x+13=13x+12\frac{1}{2}x+\frac{1}{3}=\frac{1}{3}x+\frac{1}{2}

Corrigé

  1. 2x+3=5x12x+3=5x - 1 équivaut à :

    2x5x=132x - 5x= - 1 - 3

    3x=4 - 3x= - 4

    x=43x=\frac{ - 4}{ - 3}

    x=43x=\frac{4}{3}

    Donc l'ensemble des solutions est S={43}S=\left\{\frac{4}{3}\right\}

  2. 3(x+2)2x=x+53\left(x+2\right) - 2x=x+5 équivaut à :

    3x+62x=x+53x+6 - 2x=x+5

    x+6=x+5x+6=x+5

    xx=56x - x=5 - 6

    0x=10x= - 1

    Cette équation n'a pas de solution (0x0x vaut toujours zéro et ne peut pas valoir 1 - 1)

    Donc S=S=\varnothing

  3. 12x+13=13x+12\frac{1}{2}x+\frac{1}{3}=\frac{1}{3}x+\frac{1}{2} équivaut à :

    12x13x=1213\frac{1}{2}x - \frac{1}{3}x=\frac{1}{2} - \frac{1}{3}

    36x26x=3626\frac{3}{6}x - \frac{2}{6}x= \frac{3}{6} - \frac{2}{6}

    16x=16\frac{1}{6}x= \frac{1}{6}

    x=1616x= \frac{\frac{1}{6}}{\frac{1}{6}}

    x=16×61x= \frac{1}{6}\times \frac{6}{1}

    x=1x= 1

    Donc S={1}S=\left\{1\right\}