Probabilités – Bac S Polynésie 2018
Exercice 1 (5 points)
Commun à tous les candidats
Rappel de connaissances :
L'intervalle de fluctuation asymptotique au seuil de 95 % est donné par la formule :
où désigne la taille de l'échantillon et la proportion des individus possédant le caractère étudié dans cette population. Les conditions de validité de cet intervalle sont les suivantes :
La municipalité d'une grande ville dispose d'un stock de DVD qu'elle propose en location aux usagers des différentes médiathèques de cette ville.
Afin de renouveler son offre de location, la municipalité décide de retirer des DVD de son stock.
Parmi les DVD retirés, certains sont défectueux, d'autres non.
Parmi les 6 % de DVD défectueux sur l'ensemble du stock, 98 % sont retirés.
On admet par ailleurs que parmi les DVD non défectueux, 92 % sont maintenus dans le stock ; les autres sont retirés.
Les trois parties sont indépendantes.
Partie A
On choisit un DVD au hasard dans le stock de la municipalité.
On considère les événements suivants :
: « le DVD est défectueux » ;
: « le DVD est retiré du stock » ».
On note et les événements contraires respectifs des événements et .
Démontrer que la probabilité de l'événement est .
Une association caritative contacte la municipalité dans l'objectif de récupérer l'ensemble des DVD qui sont retirés du stock. Un responsable de la ville affirme alors que parmi ces DVD retirés, plus de la moitié est composée de DVD défectueux.
Cette affirmation est-elle vraie ?
Partie B
Une des médiathèques de la ville se demande si le nombre de DVD défectueux qu'elle possède n'est pas anormalement élevé. Pour cela, elle effectue des tests sur un échantillon de DVD de son propre stock qui est suffisamment important pour que cet échantillon soit assimilé à un tirage successif avec remise. Sur cet échantillon, on détecte DVD défectueux.
Peut-on rejeter l'hypothèse selon laquelle, dans cette médiathèque, 6 % des DVD sont défectueux ?
Partie C
Une partie du stock de DVD de la ville est constituée de DVD de films d'animation destinés au jeune public. On choisit un film d'animation au hasard et on note la variable aléatoire qui donne la durée, en minutes, de ce film. suit une loi normale d'espérance min et d'écart-type .
De plus, on estime que .
Déterminer le réel et en donner une valeur approchée à .
Un enfant regarde un film d'animation dont il ne connaît pas la durée. Sachant qu'il en a déjà vu une heure et demie, quelle est la probabilité que le film se termine dans les cinq minutes qui suivent ?