SUITES - BAC S AMÉRIQUE DU NORD 2013

 (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2u_n}$.

1)

Variables: *n* est un entier naturel

u est un réel positif

Initialisation : Demander la valeur de *n*

Affecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

...Affecter à u la valeur $\sqrt{(2u)}$

Fin de Pour

Sortie : Afficher *u*

- 1.a) Résultat à 10^{-4} près affiché par l'algorithme ci-dessus pour n = 3: 1,8340.
- 1.b) L'algorithme permet de calculer u_n .
- 1.c) Valeurs de u_n calculées par l'algorithme :

ĺ	n	1	5	10	15	20
ı	п	1	J	10	10	20
	Valeur affichée	1,4142	1,9571	1,9986	1,9999	1,9999

On peut conjecturer que (u_n) est croissante et convergente quand $n \to +\infty$.

2)

2.a)
$$u_0 = 1$$
 et $u_{n+1} = \sqrt{2u_n}$ pour tout $n \in \mathbb{N} \implies u_n > 0$ pour tout $n \in \mathbb{N}$.

Démontrons par récurrence que $u_n \le 2$ pour tout $n \in \mathbb{N}$:

La proposition est vraie pour $u_0 = 1$. Si elle vraie pour u_n , démontrons qu'elle est aussi vraie pour u_{n+1} :

$$u_{n+1} = \sqrt{2u_n} = \sqrt{2}\sqrt{u_n}.$$

$$u_n \le 2 \Rightarrow \sqrt{u_n} \le \sqrt{2}$$
 et $u_{n+1} \le \sqrt{2}\sqrt{2} \Rightarrow u_{n+1} \le 2$.

Alors, par récurrence, $u_n \le 2$ pour tout $n \in \mathbb{N}$.

2.b) On a
$$u_{n+1} - u_n = \sqrt{2u_n} - u_n = u_n \left(\sqrt{\frac{2}{u_n}} - 1 \right)$$
.

$$u_n \le 2 \Rightarrow \frac{2}{u_n} \ge 1 \Rightarrow \sqrt{\frac{2}{u_n}} \ge 1 \Rightarrow \sqrt{\frac{2}{u_n}} - 1 \ge 0$$

Comme
$$u_n > 0$$
, alors $u_{n+1} - u_n = u_n \left(\sqrt{\frac{2}{u_n}} - 1 \right) \ge 0$, et $u_{n+1} \ge u_n$.

Ceci implique que (u_n) est croissante.

2.c) (u_n) est croissante et $0 < u_n \le 2$ impliquent que la suite est convergente et tend vers une limite I telle que $0 < I \le 2$.

3) (v_n) définie par $v_n = \ln u_n - \ln 2$ pour tout $n \in \mathbb{N}$.

3.a) Calculons v_0 : $v_0 = \ln u_0 - \ln 2 = \ln 1 - \ln 2 = -\ln 2$.

Exprimons v_{n+1} en fonction de u_n :

$$v_{n+1} = \ln u_{n+1} - \ln 2 = \ln \sqrt{2u_n} - \ln 2 = \ln (2u_n)^{\frac{1}{2}} - \ln 2 = \frac{1}{2} \ln 2u_n - \ln 2 = \frac{1}{2} \ln 2 + \frac{1}{2} \ln u_n - \ln 2$$

$$v_{n+1} = \frac{1}{2} (\ln u_n - \ln 2)$$

C'est à dire $v_{n+1} = \frac{1}{2}v_n$.

Donc, (v_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$.

3.b) De ce qui précède, on peut écrire :
$$v_n = -\left(\frac{1}{2}\right)^n \ln 2 = \ln 2^{-\left(\frac{1}{2}\right)^n}$$
.

Alors
$$\ln u_n - \ln 2 = \ln 2^{-\left(\frac{1}{2}\right)^n}$$
 et $\ln u_n = \ln 2 + \ln 2^{-\left(\frac{1}{2}\right)^n} = \ln 2 \times 2^{-\left(\frac{1}{2}\right)^n} = \ln 2^{1-\left(\frac{1}{2}\right)^n}$.
D'où $u_n = 2^{1-\left(\frac{1}{2}\right)^n}$.

3.c) Quand
$$n \to +\infty$$
, $\left(\frac{1}{2}\right)^n \to 0$ et $1 - \left(\frac{1}{2}\right)^n \to 1$

D'où
$$\lim_{n\to+\infty} (u_n) = 2$$

3.d)

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à n la valeur 0

Affecter à u la valeur 1

Traitement : Tant que u < 1,999

....Affecter à u la valeur $\sqrt{2u}$

....Affecter à n la valeur n + 1

Fin tant

Sortie : Afficher *n*

NB) L'application de l'algorithme donne n = 11.