ARITHMÉTIQUE : SUITE D'ENTIERS – BAC S AMÉRIQUE DU NORD 2011

PARTIE A

Théorème de Gauss: Soit a, b et c trois nombres $\in \mathbb{Z}^*$. Si a divise le produit b c et si a et b sont premiers entre eux, alors a divise c.

Théorème de Bézout: Deux entiers relatifs sont premiers entre eux si, et seulement si, il existe deux entiers relatifs u et v tels que a u + b v = 1.

Si a divise le produit b c, il existe un nombre relatif k tel que k a = b c Si a et b sont premiers entre eux, ils satisfont à l'égalité de Bézout : $a + b \cdot v = 1$.

Multiplions les deux membres de cette égalité par c :

a c u + b c v = c. Comme b c = k a, on a:

a c u + k a v = c

a (c u + k v) = c

donc a divise c.

PARTIE B

1) $u_n = 2^n + 3^n + 6^n - 1$

		,		,		
n	1	2	3	4	5	6
u_n	10	48	250	1392	8050	47448

2) Pour n > 0, on a les égalités suivantes modulo (2) :

$$2^{n} = 0$$
; $3 = 1$ d'où $3^{n} = 1$; $6^{n} = 0$.

Donc $u_n = 2^n + 3^n + 6^n - 1 = 0 + 1 + 0 - 1 = 0$ donc u_n est pair pour tout n > 0.

3) Posons n = 2k, k étant un entier naturel non nul.

$$u_n = 2^n + 3^n + 6^n - 1 = (2^2)^k + (3^2)^k + (6^2)^k - 1.$$

On a les égalités suivantes modulo (4):

 $(2^2)^k = 0$; $3^2 = 1$ d'où $(3^2)^k = 1$; $(6^2)^k = 0$ donc u_n est divisible par 4 pour tout n pair et non nul.

- 4) D'après le tableau en 1) : $u_1 = 10$, divisible par 2 ; $u_2 = 48$, divisible par 3 ; $u_3 = 250$, divisible par 5 ; et $u_5 = 8050$, divisible par 7. Donc 2, 3, 5 et $7 \in (E)$.
- 5) Remarquons que si p est un nombre premier > 3, il est premier avec 2, avec 3 et avec 6.

5.a) D'après le petit théorème de Fermat on a:

 $2^{p-1} \equiv 1$ [p] qui peut s'écrire 2 x $2^{p-2} \equiv 1$ [p] et, en multipliant les deux membres de la congruence par 3 :

$$6 \times 2^{p-2} \equiv 3 [p].$$

Similairement:

 $3^{p-1} \equiv 1$ [p] qui peut s'écrire 3 x $3^{p-2} \equiv 1$ [p] et, en multipliant les deux membres de la congruence par 2 :

$$6 \times 3^{p-2} \equiv 2 [p].$$

$$\begin{split} 5.b) \ u_{p-2} &= 2^{p-2} + 3^{P-2} + 6^{p-2} - 1 \\ 6 \ u_{p-2} &= 6 \ \text{x} \ 2^{p-2} + 6 \ \text{x} \ 3^{P-2} + 6 \ \text{x} \ 6^{p-2} - 6 \\ 6 \ u_{p-2} &= 6 \ \text{x} \ 2^{p-2} + 6 \ \text{x} \ 3^{P-2} + 6^{p-1} - 6 \end{split}$$

En remarquant que $6^{p-1} \equiv 1$ [p] (petit théorème de Fermat), on a

$$6 \times 2^{p-2} + 6 \times 3^{p-2} + 6^{p-1} - 6 \equiv 3 + 2 + 1 - 6 \equiv 0$$
 [p], soit

$$6 u_{p-2} \equiv 0 [p]$$

5.c) p est premier avec 6, donc p divise u_{p-2} (théorème de Gauss). Donc $p \in (E)$.